Mathematics

Undergraduate

Math majors do everything and anything.

Program Overview

Each year graduates of our program enter graduate programs in the mathematical sciences or in allied fields (engineering, business, economics, physics, operations research). Some go on to medical school, law school, and other professional schools. Others begin careers in schools, banks, and other financial institutions, software companies, insurance companies, and research laboratories.

Community Voices

Spotlight on Mathematics students and alums

Selecting courses in your first year

As a first year student you may consider beginning your study of mathematics and statistics with any of the courses below.

  • MATH-100(with any suffix) Problem-Solving and Quantitative Reasoning (Pre-Calculus)
  • MATH-101 Calculus I
  • Any Explorations Course, when offered
  • MATH-102 Calculus II
  • MATH-203 Calculus III
  • MATH-211 Linear Algebra
  • MATH-232 Discrete Mathematics
  • MATH-251 Lab: Math Experimentation

You should take the Mathematics Assessment to determine placement if you wish to take Math-100 or Calculus I or II.

Courses and Requirements

Learning Goals

We welcome all students into the Mathematics major, and we aim to create an inclusive, supportive environment for everyone. Mathematics majors will be able to:

  • Clearly communicate mathematical ideas, using language and visual tools appropriate to the audience.

  • Use theoretical and computational skills from both the continuous and discrete domains to understand pure and applied mathematical problems.

  • Ask questions about new methods and applications, learn new techniques, and make new discoveries.

  • Incorporate “big picture” reasoning, including ethics, practicality, and creativity, into mathematical practice.

  • Develop the independence to approach new problems, and the ability to collaborate effectively.

Requirements for the Major

A minimum of 36 credits

MATH-203Calculus III4
MATH-211Linear Algebra4
MATH-232Discrete Mathematics4
or MATH-206 Introduction to Proofs Through Analysis
MATH-301Real Analysis4
MATH-312GTAbstract Algebra: 'Groups'4
or MATH-312RT Abstract Algebra: 'Rings'
4 additional credits in mathematics or statistics at the 300 level4
12 additional credits in mathematics or statistics at the 200 level or above 1,212
Total Credits36
1

We strongly encourage students to explore topics in applied mathematics and statistics and urge students to begin this before their junior year. 

2

With prior approval, a 300-level course that contains substantial mathematical or statistical content in another discipline may be used to fulfill at most 4 of these credits toward the major.

Students considering developing a special major in mathematics and economics should consult the Special Major chapter.

Requirements for the Minor

A minimum of 16 credits:

At least one 200-level course in mathematics4
At least one 300-level course in mathematics4
Two additional courses in mathematics or statistics at the 200 level or above8
Total Credits16

Additional Specifications

  • Students planning a minor in mathematics should consult a member of the department.
  • With departmental permission, students who have already completed one 100-level exploration course may elect to enroll in a second exploration course at the 200-level so that it may be counted toward the minor.

Course Advice

Beginning the Study of Mathematics

There are many ways to begin the study of the mathematical sciences at Mount Holyoke College. Students can begin with precalculus, calculus, an introduction to statistics or data analysis, an "explorations" course, or computer science.

If your interests lie in science, economics, or social sciences, calculus is important because it is the language these disciplines use. Students who are planning to take Precalculus or Calculus I are required to complete a brief online self-assessment. The self-assessment is available to all entering students. It is designed so that a student can use it as a learning tool, taking it as many times as they wish. More information is on the department’s website.

Toward the Study of Calculus

If the online self-assessment or your own mathematics background suggests, you should complete a year-long sequence of MATH-100, followed by MATH-101. Mount Holyoke's MATH-100 course (including all of its variants like MATH-100QR) awards 4 credits and fulfills the Math/Science distribution requirement. Precalculus courses taken outside the Mount Holyoke College MATH-100/MATH-101 sequence will not be granted credit nor be approved to satisfy any distribution requirement.

Beginning with Calculus

If you wish to begin with a calculus course, you can take any of the following:

MATH-101Calculus I4
MATH-102Calculus II4
MATH-203Calculus III4

Students who have not studied calculus and who have the necessary precalculus background belong in Calculus I.

Most students who have taken calculus in high school begin with Calculus II. In particular, if you have studied the derivative and its applications and have been introduced to the definite integral, you should take the Calculus Assessment to determine if you are ready to move to Calculus II.

If you have a good knowledge of applications of integration and of transcendental functions, and if you enjoy mathematics, we encourage you to begin your college-level study of calculus with Calculus III (MATH-203). (The study of series is neither required for nor included in Calculus III. Physics and mathematics students will encounter this topic in later courses.)

Beginning the study of calculus beyond Calculus I does not require the advanced placement examination, although the score on this examination is a useful guide. A student with an advanced placement AB score of 3 or less should begin with MATH-101; an advanced placement AB score of 4 or 5 or a BC score of 3 indicates readiness for MATH-102; a grade of 4 or 5 on the BC examination indicates readiness for MATH-203.

Other Beginnings

“Explorations” courses in areas like number theory and geometry (for example MATH-139) offer another way to begin your study of mathematics. They emphasize mathematics as an art and as a way of seeing and understanding. The exploration courses do not presuppose demonstrated ability for or prior strong interest in mathematics. They intend to awaken interest by demonstrating either the remarkable pervasiveness of mathematics in nature and its power as a tool that transcends disciplines, or its qualities as an art that can fascinate and offer aesthetic pleasure to the participant. Any explorations course can serve as an entry to the further study of mathematics, and even to a minor or a major. Students who wish to go on may follow up with the Laboratory in Mathematical Experimentation (MATH-251) or Discrete Mathematics (MATH-232), among various other possibilities, all of which can be discussed with any member of the department.

A few students begin their study of mathematics with Linear Algebra (MATH-211), Discrete Mathematics (MATH-232), or the Laboratory in Mathematical Experimentation (MATH-251). Linear Algebra is a good choice for students who have a very solid background in high school mathematics and who enjoy abstraction. If you have taken some calculus, and if you enjoy new topics in mathematics, then you might consider either Discrete Mathematics (MATH-232) or the Laboratory in Mathematical Experimentation (MATH-251).

Finally, some students begin their study of mathematical sciences with statistics or computer science. For more information see the sections on statistics and computer science in this catalog.

Advice to Students with Special Interests

Actuarial science

Students interested in this area should plan to cover the material that is included in the first two actuarial exams as part of their undergraduate program. This material is included in:

MATH-101Calculus I4
MATH-102Calculus II4
MATH-203Calculus III4
MATH-342Probability4
STAT-343Mathematical Statistics4
ECON-211Macroeconomic Theory4
ECON-212Microeconomic Theory4
ECON-215Economics of Corporate Finance4

Students are also encouraged to obtain experience through an internship.

Biostatistics, public health, or natural resources

Students interested in these areas should include substantial work in biology, chemistry, geology, and/or environmental studies in their programs.

Economics or business

Many students with these interests design a special major in mathematics and economics or a special major in statistics and economics.

Engineering

Students interested in engineering often double major in mathematics and physics and/or participate in one of the College’s five-year, dual-degree programs with Dartmouth’s Thayer School of Engineering, the California Institute of Technology, or the University of Massachusetts (see the Other Degree and Certificate Programs chapter).

Graduate school

Students preparing for graduate school in mathematics or statistics often participate in an undergraduate research program in the summer after the junior year and continue with an honors thesis in the senior year. For students considering graduate work in mathematics, more than the minimum number of courses for the mathematics major is advisable.

Course Offerings

MATH-100 Precalculus

MATH-100QR Precalculus: 'Problem Solving and Quantitative Reasoning'

Fall. Credits: 4

This course is intended for students who, based on the results of their mathematics assessment and the agreement of the instructor, need to strengthen their quantitative and algebraic skills in order to be ready to progress to further mathematics, science, and economics courses. In this class students learn to translate real problems into mathematics, to solve complex multi-step problems, and to gain confidence in using logarithms, exponents, and trigonometry in different contexts.

Applies to requirement(s): Math Sciences
T. Day
Instructor permission required.
Advisory: Permission of instructor. Send score from math online self-assessment and background information to Professor Day, tday@mtholyoke.edu.

MATH-101 Calculus I

Fall and Spring. Credits: 4

This course is for students who have not studied calculus and who have the necessary precalculus background. It presents rates of change and their applications, integrals, the fundamental theorem, and modeling of phenomena in the natural and social sciences. All students are required to complete the online self assessment of precalculus skills before the course begins.

Applies to requirement(s): Math Sciences
C. Bozeman, S. Hart, L. Mrad, J. Paulhus, C. Rodriguez Avila

MATH-102 Calculus II

Fall and Spring. Credits: 4

Topics include techniques of integration, applications of integration, differential equations, sequences, series, and Taylor series.

Applies to requirement(s): Math Sciences
T. Chumley, S. Hart, R. Quarles, D. Shepardson, D. Young
Advisory: Intended for students who have passed MATH-101, or passed AP Calculus AB with a score of 4 or 5, or have placed into MATH-102 through the department's placement test.

MATH-139 Cryptography: The Mathematics of Sending Secret Messages

Not Scheduled for This Year. Credits: 4

Cryptography is the study of secret communication between different groups of people. From 4,000 years ago in ancient Egypt when secret hieroglyphs were used to communicate the messages of royalty to today when credit card numbers are encrypted to be transmitted over the internet, cryptography has been a necessary part of human life. In this class we will discuss classical cryptography and some historical ciphers along with the mathematical concepts of the modern field. We will study public key cryptography, prime numbers, the discrete logarithm problem, the Diffie-Hellman key exchange, and RSA encryption. If time permits we will also discuss elliptic curve encryption. In particular, we will use the Python programming language and Jupyter notebooks to implement the encryption schemes that we study.

Applies to requirement(s): Math Sciences
Other Attribute(s): Speaking-Intensive, Writing-Intensive
M. Robinson
Notes: Students who have taken a 100-level Mathematics, Statistics, or Computer Science course can take this at the 200-level with permission of the professor.

MATH-203 Calculus III

Fall and Spring. Credits: 4

Topics include differential and integral calculus of functions of several variables.

Applies to requirement(s): Math Sciences
L. Mrad, J. Paulhus, R. Quarles
Prereq: MATH-102 or its equivalent.

MATH-206 Introduction to Proofs Through Analysis

Fall and Spring. Credits: 4

An introduction to abstract reasoning in the context of real analysis. Topics will be drawn from the real numbers, mathematical induction, functions, sequences, and continuity. The emphasis is on formal mathematical reasoning and writing through proofs.

Applies to requirement(s): Math Sciences
T. Chumley
Prereq: MATH-102 or above.
Advisory: Students may not take this course after completing MATH-301.

MATH-211 Linear Algebra

Fall and Spring. Credits: 4

Topics include elements of the theory of matrices and vector spaces.

Applies to requirement(s): Math Sciences
A. Hoyer-Leitzel, L. Mrad, C. Rodriguez Avila, D. Young
Prereq: MATH-102 or above.

MATH-232 Discrete Mathematics

Fall and Spring. Credits: 4

Studies some aspects of discrete mathematics. Topics include sets, functions, elementary probability, induction proofs, and recurrence relations.

Applies to requirement(s): Math Sciences
C. Bozeman, T. Day, R. Quarles, D. Shepardson, D. Young
Prereq: MATH-102 or above or COMSC-150/151.

MATH-251 Mathematical Experimentation: An Introduction to Research in the Mathematical Sciences

Fall. Credits: 4

A selection of projects with a goal of discovery of properties and patterns in mathematical structures. The choice of projects varies from year to year and is drawn from algebra, analysis, discrete mathematics, geometry, applied mathematics, and statistics.

Applies to requirement(s): Math Sciences
Other Attribute(s): Writing-Intensive
M. Robinson
Prereq: MATH-102 (or the equivalent).
Advisory: First years-and seniors should contact the professor for permission.

MATH-272 Numerical Calculus

Not Scheduled for This Year. Credits: 4

This course is an introduction to computation and computing from a mathematical perspective, covering topics such as numerical algorithms for differentiation, integration, root finding, curve fitting, and error analysis. These tools are very powerful when one finds a mathematical or an applied problem that cannot be solved using the types of analytical functions one learns in calculus. This course is for students with little or no programming knowledge and an interest in learning skills for mathematical computations. The course will cover the basics of programming: types of variables, lists, arrays, for and while loops, if statements, file handling, plotting, pseudo-code and documentation.

Applies to requirement(s): Math Sciences
The department
Prereq: MATH-102.
Advisory: Students who have completed COMSC-150 or any version of COMSC-151 are not allowed to take this course.

MATH-295 Independent Study

Fall and Spring. Credits: 1 - 4

The department
Instructor permission required.
Notes: The permission of The department is required for independent work to count towards the major or minor.

MATH-301 Real Analysis

Fall and Spring. Credits: 4

Topics include the real number system, convergence of sequences and series, power series, uniform convergence, compactness and connectedness, continuity, abstract treatment of differential and integral calculus, metric spaces, and point-set topology.

Applies to requirement(s): Math Sciences
T. Chumley, L. Mrad
Prereq: MATH-102, and MATH-211, and either MATH-206 or MATH-232.

MATH-302 Complex Analysis

Not Scheduled for This Year. Credits: 4

Topics include differentiation and integration of functions of a complex variable, the Cauchy integral formula, residues, conformal mapping, and applications to physical science and number theory.

Applies to requirement(s): Math Sciences
The department
Prereq: MATH-211 and either MATH-206 or MATH-232.
Notes: Offered alternate years at Mount Holyoke and Smith Colleges.

MATH-311 Advanced Linear Algebra

Spring. Credits: 4

Linear algebra is one of the foundational areas of mathematics. Research from facial recognition and compressed sensing in applied math to deep results in pure math require advanced linear algebra. In addition, computer graphics, large language models, and linear models in statistics rely heavily on linear algebra techniques. Students in this course will learn the abstract mathematical ideas behind these applications, as well as gain experience with computational techniques in the field. Likely topics include abstract vector spaces, inner product spaces, singular value decompositions and other matrix factorizations, numerical techniques, and symmetric matrices.

Applies to requirement(s): Math Sciences
J. Paulhus
Prereq: MATH-211 and either MATH-206 or MATH-232.

MATH-312 Abstract Algebra

MATH-312GT Abstract Algebra: 'Groups'

Spring. Credits: 4

Abstract algebra is the study of the common principles that govern computations with seemingly disparate objects. One way to begin is by studying groups, which are sets with a single operation under which each non-identity element is invertible. Examples include the integers with addition, invertible matrices of size n, permutations of a fixed set, and the symmetries of an object. Our goal is to study a definition of groups that unifies all of the important examples above and more.

Applies to requirement(s): Math Sciences
D. Young
Prereq: MATH-211 and either MATH-206 or MATH-232.
Advisory: Students who have taken MATH-312GT Rings may only take MATH-311 Abstract Algebra: Groups and Rings with instructor permission.
Notes: This course will satisfy the MATH-311 requirement for the Mathematics major.

MATH-312RT Abstract Algebra: 'Rings'

Fall. Credits: 4

Abstract algebra is the study of the common principles that govern computations with seemingly disparate objects. One way to begin is by studying rings, which are sets with two operations, typically addition and multiplication. Examples include the integers, the integers modulo n, and polynomials in n variables. Our goal is to study a definition of rings that unifies all of the important examples above and more.

Applies to requirement(s): Math Sciences
C. Bozeman
Prereq: MATH-211 and either MATH-206 or MATH-232.
Advisory: Students who have taken MATH-312RT Rings may only take MATH-311 Abstract Algebra: Groups and Rings with instructor permission.
Notes: This course will satisfy the MATH-311 requirement for the Mathematics major.

MATH-319 Topics in Algebra

MATH-319GR Topics in Algebra: 'Graph Theory'

Spring. Credits: 4

Graph theory gives us both an easy way to pictorially represent many major mathematical results and insights into the deep theories behind them. Graphs seem simple -- they're just collections of dots connected by curves -- but are very rich structures that arise naturally in applications ranging from social networks to electric power grids. We will examine properties such as isomorphism, connectivity, planarity, and coloring using classic examples such as paths, cycles, trees, complete graphs, and polyhedral graphs. More advanced topics will be determined by student interest and course trajectory.

Applies to requirement(s): Math Sciences
C. Bozeman
Prereq: MATH-232.

MATH-319NT Topics in Algebra: 'Number Theory'

Fall. Credits: 4

This course will begin with an introduction to number theory, covering material on congruences, prime numbers, arithmetic functions, primitive roots, quadratic residues, and quadratic fields. We will then continue our study of number theory by picking special topics which might include some of the following: Finite Fields, Prime Factorization of Ideals, Fermat's Last Theorem, Elliptic curves, Dirichlet's Theorem on Arithmetic Progressions, the Prime Number Theorem, or the Riemann Zeta function.

Applies to requirement(s): Math Sciences
Other Attribute(s): Speaking-Intensive, Writing-Intensive
T. Day
Prereq: MATH-232, or MATH-206 with instructor permission.

MATH-329 Topics in Geometry

MATH-329TP Topics in Geometry and Topology: 'Topology'

Not Scheduled for This Year. Credits: 4

This course is an introduction to point-set topology, which is a fundamental language for much of modern mathematics. One of the goals of topology is to understand what it means for a function to be continuous, first in Euclidean space, and then to generalize the notion of continuity to other spaces. The core topics to be studied include: basic set theory, various interesting topologies, continuous functions, connectedness and compactness. Topics from algebraic topology will be covered if time permits.

Applies to requirement(s): Math Sciences
The department
Prereq: MATH-232 and any 300-level Math class.

MATH-333 Differential Equations

Fall. Credits: 4

This is an introduction to differential equations for students in the mathematical or other sciences. Topics include first-order equations, second-order linear equations, and qualitative study of dynamical systems

Applies to requirement(s): Math Sciences
A. Hoyer-Leitzel
Prereq: MATH-211.

MATH-339 Topics in Applied Mathematics

MATH-339FM Topics in Applied Mathematics: 'Rigidity Theory'

Not Scheduled for This Year. Credits: 4

A framework constructed from fixed-length bars attached at flexible joints is either rigid or flexible. Such structures arise in many applications in architecture, engineering, robotics, and biology and provide a model for understanding related problems in areas including computer-aided design, sensor networks, and statistics. We will use linear algebra and graphs to develop the theory needed to analyze frameworks and make connections to applications.

Applies to requirement(s): Math Sciences
The department
Prereq: MATH-101, MATH-211, and either MATH-206 or MATH-232.

MATH-339PD Topics in Applied Mathematics: 'Partial Differential Equations'

Not Scheduled for This Year. Credits: 4

Partial differential equations (PDEs) are often used to describe natural phenomena arising in a wide variety of contexts including physics, biology, and economics. Our focus will be on basic yet representative linear partial differential equations such as the heat and wave equations. We will explore the motivation behind each model we study and emphasize methods of finding solutions and analyzing their behavior. Techniques will include transform methods, separation of variables, energy methods, and numerical computations.

Applies to requirement(s): Math Sciences
The department
Prereq: MATH-203 and MATH-211, or PHYS-205.

MATH-339PT Topics in Applied Mathematics: 'Optimization'

Spring. Credits: 4

Mathematical optimization involves finding the best solution to a problem from a set of feasible solutions defined by mathematical constraints. It has an elegant theory and applications in fields like management, economics, engineering, and computer science that require decision making under constraints on time or other resources. We will begin by studying linear optimization, including duality, the simplex algorithm, and the geometry of linear programming. Other topics will include discrete optimization, network optimization, and nonlinear optimization.

Applies to requirement(s): Math Sciences
D. Shepardson
Prereq: MATH-211.

MATH-339SP Topics in Applied Mathematics: 'Stochastic Processes'

Not Scheduled for This Year. Credits: 4

Stochastic processes are mathematical models that evolve with time and include an element of randomness. They involve a collection of states-for example, the weather in a geographical location, the size of a population, or the length of a queue-and a description of how the system evolves from one state to the next. This course is devoted to the study of a class of stochastic processes called Markov chains, and we attempt to study their behavior using tools from probability theory and linear algebra in beautiful, interconnected ways. Topics will include Markov chains in discrete and continuous time, branching processes, queuing theory, and Markov chain Monte Carlo.

Applies to requirement(s): Math Sciences
T. Chumley
Prereq: MATH-211 and MATH-342.

MATH-342 Probability

Fall and Spring. Credits: 4

This course develops the ideas of probability simultaneously from experimental and theoretical perspectives. The laboratory provides a range of experiences that enhance and sharpen the theoretical approach and, moreover, allows us to observe regularities in complex phenomena and to conjecture theorems. Topics include: introductory experiments; axiomatic probability; random variables, expectation, and variance; discrete distributions; continuous distributions; stochastic processes; functions of random variables; estimation and hypothesis testing.

Applies to requirement(s): Math Sciences
T. Day, A. Hoyer-Leitzel
Prereq: MATH-203.

MATH-395 Independent Study

Fall and Spring. Credits: 1 - 8

The department
Instructor permission required.
Notes: The permission of The department is required for independent work to count towards the major or minor.

Contact us

The Department of Mathematics and Statistics strives to teach the language of the mathematical sciences, provide a command of mathematical tools, develop problem-solving skills, foster an ability to ask questions and make independent discoveries.

Connell Heady
  • Academic Department Coordinator

Next steps

Apply to Mount Holyoke

Mount Holyoke seeks intellectually curious applicants who understand the value of a liberal arts education and are driven by a love of learning. As a women's college that is gender diverse, we welcome applications from female, trans and non-binary students.

Financing your education

Everyone’s financial situation is unique, and we’re here to make sure cost does not get in the way of an exceptional education.